Frithjof Lutscher


Frithjof Lutscher
Full Professor

Dipl. Math.
Ph.D. (Tuebingen)

KED 203C

Office: 613-562-5800 ext. 3510

Work E-mail:

Lutscher, Frithjof


Research focuses on developing and analyzing mathematical models for spatio-temporal dynamics of complex, non-linear biological systems. Mathematically, this results in qualitative analysis of dynamical systems, given by ordinary or partial differential equations, integro-difference- or integro-differential equations. Several analytical and numerical approaches are used to investigate bifurcations, traveling waves and other phenomena. Biologically, topics come from spatial ecology and evolution: species invasions, habitat fragmentation, persistence and coexistence in rivers, adaptation, disease and resistance.

Selected publications:

  • F. Lutscher and J. Musgrave (2017), Behavioral responses to resource heterogeneity can accelerate biological invasions. Ecology 98(5): 1229-1238
  • R. Tyson and F. Lutscher (2016), Seasonally Varying Predation Behavior and Climate Shifts Are Predicted to Affect Predator-Prey Cycles. American Naturalist 188(5): 539-553
  • Y. Zhang, F. Lutscher, F. Guichard (2015) How robust is dispersal-induced spatial synchrony?, Chaos 25, 036402 DOI: 10.1063/1.4906951
  • G.A. Maciel, F. Lutscher (2013), How individual movement response to habitat edges affects population persistence and spatial spread, American Naturalist 182(1): 42-52
  • Y. Lou, F. Lutscher (2014), Evolution of dispersal in open advective environments, J. Math. Biol. 69(6-7): 1319-1342 DOI 10.1007/s00285-013-0730-2

Supervised Students and Postdocs:

  • Graduate Students:
    • James Dowdall
    • Jane MacDonald
    • Nazanin Zaker
    • Laurence Ketchemen
  • Postdoctoral Researchers:
    • Xiaoying Wang

Research Group(s): Applied Mathematics


  • Department of Biology
  • Member of CAMBAM
  • Member of CRM

Fields of Interest

  • Équations différentielles
  • Systèmes dynamiques
  • Biologie mathématiques
  • Écologie spatiale et évolution
  • Invasion biologique
  • Biologie de la conservation
  • Écosystèmes des rivières
  • Équations différentielles ordinaires et partielles
  • Équations de intégrodifférence
  • Bifurcations
Back to top