Frithjof Lutscher


Frithjof Lutscher
Full Professor and Assistant Chair - Research

Dipl. Math.
Ph.D. (Tuebingen)

Room: STM 525
Office: 613-562-5800 ext. 3510
Work E-mail:


Research focuses on developing and analyzing mathematical models for spatio-temporal dynamics of complex, non-linear biological systems. Mathematically, this results in qualitative analysis of dynamical systems, given by ordinary or partial differential equations, integro-difference- or integro-differential equations. Several analytical and numerical approaches are used to investigate bifurcations, traveling waves and other phenomena. Biologically, topics come from spatial ecology and evolution: species invasions, habitat fragmentation, persistence and coexistence in rivers, adaptation, disease and resistance.

Selected publications:

  • R. Arumugam, F. Lutscher, F. Guichard (2021) Tracking unstable states: Ecosystem dynamics in a changing world. Oikos 130(4): 525-540
  • F. Lutscher, X. Wang (2020) Reactivity of communities at equilibrium and periodic orbits. Journal of Theoretical Biology 493: 110240
  • F. Lutscher (2019), Integrodifference equations in spatial ecology Springer, Interdisciplinary Applied Mathematics, Vol. 49, 385 pages
  • E. Crone, L. Brown, J Hodgson, F. Lutscher and C. Schultz (2019), Faster movement in habitat matrix promotes faster range shifts in heterogeneous landscapes. Ecology 100(7): e02701
  • A. Bourgeois, V. LeBlanc, F. Lutscher (2018), Spreading phenomena in integrodifference equations with non-monotone growth functions. SIAM Appl Math 78(6): 2950-2972

Supervised Students and Postdocs:

  • Graduate Students:
    • Maryam Basiri
    • Jane MacDonald
    • Laurence Ketchemen
  • Postdoctoral Researchers:
    • Sebastien Portalier

Research Group(s): Applied Mathematics


  • Department of Biology
  • Member of CAMBAM
  • Member of CRM

Fields of Interest

  • Équations différentielles
  • Systèmes dynamiques
  • Biologie mathématique
  • Écologie spatiale et évolution
  • Invasion biologique
  • Biologie de la conservation
  • Écosystèmes des rivières
  • Équations différentielles ordinaires et partielles
  • Équations de intégrodifférence
  • Bifurcations
Back to top